当前位置: 首 页 - 科学研究 - 学术报告 - 正文

金沙集团1862cc、所2024年系列学术活动(第095场):Yunnan Li Guangzhou University

发表于: 2024-08-22   点击: 

报告题目:What is a Yetter-Drinfeld post-Hopf algebra?

报 告 人:Yunnan Li, Guangzhou University

所在单位:Guangzhou University

报告时间:2024年8月23日 10:00-11:00

报告地点:金沙集团1862cc数学楼第6研讨室

校内联系人:生云鹤 shengyh@jlu.edu.cn


报告摘要: Recently the notion of post-Hopf algebra was introduced, with the universal enveloping algebra of a post-Lie algebra as the prototype. Any cocommutative post-Hopf algebra gives rise to a sub-adjacent Hopf algebra, and then produces interacting structures such as relative Rota-Baxter operator, matched pair and Hopf brace. Just a few weeks ago, Sciandra proposed Yetter-Drinfeld post-Hopf algebra, as a natural generalization of post-Hopf algebra in the non-cocommutative setting, and most remarkably it also provides a sub-adjacent structure. Correspondingly, the concepts of Yetter-Drinfeld relative Rota-Baxter operator and Yetter-Drinfeld Hopf brace can be studied. In this talk, I intend to review Sciandra's work, and give some problems to concern.


报告人简介:黎允楠,广州大学数学与信息科学学院副教授,博士毕业于华东师范大学数学系,研究方向为李代数、量子群与代数组合,现与合作者在国际数学期刊Math. Z., J. Combin. Theory Ser. A., J. Noncomm. Geom., J. Algebra, Pacific J. Math., J. Algebraic Combin. 等发表论文十余篇。2015年成为美国数学会数学评论网评论员,2018-2019国家公派美国罗格斯大学研修访问,2020年认定为广州市青年后备人才。